

Ultra-Smart Luminaires, Windows & Skylights

Konstantinos Papamichael, Ph.D. Professor, Department of Design Co-Director, California Lighting Technology Center University of California, Davis

RESEARCHINNOVATIONPARTNERSHIP633 Pena Drive, Davis, CA, 95618 | cltc.ucdavis.edu | PH: 530-747-3838, FAX:530-747-3812

New, Market Driven Technologies

... we need a simplified, inexpensive daylight harvesting control system that turns off half of the lights in areas with plenty of daylight, such as next to windows and under skylights ...

Not enough daylight: 100% lighting

"Enough" daylight: 50% lighting

Even more daylight: 0% lighting

Bi-Level Switching

Bi-Level Switching

Commercialization

LS-102 Daylighting Controller by Watt Stopper/Legrand

- On/Off Switching based on available daylight
- Automatic, continuous calibration
- Adjustable set points
- Adjustable time delay

From the Lab...

... To the Marketplace

New, Market Driven Technologies

... we need a simplified, inexpensive daylight harvesting control system that turns off half of the lights in areas with plenty of daylight, such as next to windows and under skylights ...

... we need a daylight harvesting system that reliably dims electric lights based on available daylight indoors ...

Traditional Daylight Sensing Strategies

Advantages

Measures light in the space

Disadvantages

- Requires re-calibration for long-term changes (geometry and reflectance of interior surfaces)
- Cannot differentiate between:
 - Daylight changes (fluctuations in daylight levels)
 - Short-term space changes (moving occupants/objects)

Advantages

• Not affected by changes in the space

Disadvantages

- Requires commissioning
- Not an accurate indicator of daylight levels in the space

Dual-Loop Daylight Sensing

Field Testing

West Sacramento Wal-Mart Store

Effect of Space Changes on Sensor Signal

12/25/08: EL = 4.75

12/26/08: EL = 4.77

12/29/08: EL = 4.94

01/01/09: EL = 5.77

01/04/09: EL = 6.34

01/05/09: EL = 6.97 (+47%)!

Commercialization

Dual Loop Commercial Prototype Watt Stopper/Legrand

From the Lab...

... To the Marketplace

Smart Skylights for Performance Optimization

 Bring enough daylight to minimize electric lighting requirements ...

... AND then ...

- Manage daylight penetration to minimize glare & HVAC loads
- Automation
 - Automated calibration
 - Automated operation
- Dual loop integrated control
 - Dimming of electric lighting
 - Modulation of skylight transmittance

Skylight Performance Optimization

- Electric lights are dimmed until off, based on available daylight
- After electric lights are off, skylight transmittance is modulated to keep daylight at the level that electric lights turned off

Smart Windows & Skylights

• Multi-sensor-based automated controls

- Occupancy, light, air temperature, etc., indoors & outdoors
- Multiple performance aspects
 - Luminous, thermal, ventilation, view, safety, etc.

Dual Loop for Window Applications

Closed Loop Sensors in Each Luminaire

- You can fool one sensor at a time
- Fooling multiple sensors at the same time in the same way requires special choreography...

Costs From One to Multiple Brains

	Installation	Commissioning	Operation
Building	\$\$\$\$	\$\$\$\$	\$\$\$\$
Floor	\$\$\$\$	\$\$\$\$	\$\$\$
Space	\$\$\$	\$\$\$	\$\$
Area	\$\$	\$\$\$	\$\$
Luminaire	\$	\$	\$

Ultra-Smart Luminaire

- Integral sensors, logic controllers & actuators
- Customization at the factory
 - Sensors sense luminaire area
 - Actuators affect luminaire area
- Automated operation
 - Automatic calibration of sensors
- Network communications
 - Luminaires Broadcast signals
 - To anyone interested
 - Luminaires Receive signals
 - From anyone of interest
 - Other luminaires, windows, HVAC, occupants, ...
 - Utility Demand Response (DR) signals & real time pricing, ...
 - Weather data on irradiance, illuminance, cloud coverage, sun position, ...

CLTC Daylight Harvesting Laboratory

CLTC Daylight Harvesting Laboratory

Fenestration Elevation

Section

CLTC Daylight Harvesting Laboratory

Integrated Control Strategy

- During Occupancy Focus on Comfort
 - Adjust fenestration for daylight penetration
 - Adjust electric lighting for daylight contribution
 - Adjust HVAC for thermal comfort & indoor air quality
- During Vacancy Focus on Energy Efficiency
 - Adjust fenestration for cooling/heating loads
 - Turn electric lighting off or dim down
 - Adjust HVAC for thermal comfort & indoor air quality

Thank You!

Konstantinos Papamichael, Ph.D. Professor, Department of Design Co-Director, California Lighting Technology Center University of California, Davis

RESEARCHINNOVATIONPARTNERSHIP633 Pena Drive, Davis, CA, 95618 | cltc.ucdavis.edu | PH: 530-747-3838, FAX:530-747-3812

