Estimating Uncertainty due to Stray Light in Spectroradiometric Measurements

Presented by: James E. Leland, Principal

Copia LLC
Consultants in Optical Science
Overview

I. Background: Stray Light Model of Zong et al.

II. Application to Estimating Uncertainty

III. Further Investigation: Thought Experiments
Overview

I. Background: Stray Light Model of Zong et al.

II. Application to Estimating Uncertainty

III. Further Investigation: Thought Experiments
I. BACKGROUND:
Stray Light Model of Zong et al.
Stray Light Model of Zong et al.

• Characterize Spectroradiometer
 • Measure multiple line sources at different wavelengths
 • Derive Line Spread Functions (LSF)
 • Interpolate to construct a distribution matrix (A)

\[Y_{\text{meas}} = A Y_{IB} \]

• Stray Light Correction
 • Apply inverse transform (A^{-1}) to measured spectrum
\[Y_{\text{meas}} = A Y_{IB} = [I + D] Y_{IB} \]

\[A^{-1} Y_{\text{meas}} = Y_{IB} \]
II. APPLICATION:
Estimating Uncertainty due to Stray Light
Estimating Uncertainty due to Stray Light

- Adopt a “typical” D matrix*
- Apply D to both DUT and REF
- Calculate the quotient:
 \[Y'_{\text{meas}}(\text{DUT}) = Y_{\text{meas}}(\text{DUT}) / Y_{\text{meas}}(\text{REF}) \]
- Apply assigned REF value as usual, e.g.
 \[\Phi_{\text{meas}}(\text{DUT}) = Y'_{\text{meas}}(\text{DUT}) \cdot \Phi(\text{REF}) \]
- Compare $\Phi_{\text{meas}}(\text{DUT})$ to $\Phi(\text{DUT})$

*Note: “Typical” D matrix can be scaled...
Spectrometer Readings [counts] for Given Source Spectra

Given: \(\Phi(DUT), \Phi(REF) \)

\[Y_{IB}(DUT) = R\Phi(DUT) \]
\[Y_{IB}(REF) = R\Phi(REF) \]
Stray Light Effect on Spectrometer Readings [counts]

\[Y_{\text{meas}} = AY_{IB} = [I + D]Y_{IB} \]

\[Y_{\text{meas}} = Y_{IB} + DY_{IB} \]
Stray Light Effect on Spectroradiometric Measurement

\[\Phi_{\text{meas}}(\text{DUT}) = \Phi(\text{REF}) \cdot \frac{Y_{\text{meas}}(\text{DUT})}{Y_{\text{meas}}(\text{REF})} \]

*Also applies to:
irradiance, intensity, and radiance
Compare

$\Phi_{\text{meas}}(\text{DUT})$ to $\Phi(\text{DUT})$

$$\Delta \Phi_{L_{\text{rel}}} = \left(\frac{\Phi_{L_{\text{meas}}}}{\Phi_{L_{0}}} \right) - 1$$

Also: $\Delta x, \Delta y, \text{etc.}$
III. FURTHER INVESTIGATION:
Thought Experiments
Thought Experiments

• Prioritizing Effort and Expense
 – Stray-light characterization & correction
 – State of the art vs. mid-range spectroradiometers
 – Expectations for low-end spectroradiometers

• Evaluating simplified stray light specifications
 – Reconciling different types of stray light standards
 – Proposing standard specifications?
Conclusion

I. Background: Stray Light Model of Zong et al.

II. Application to Estimating Uncertainty

III. Further Investigation: Thought Experiments