Development of 2π Total Spectral Radiant Flux Standards at NIST

Yuqin Zong

National Institute of Standards and Technology
Gaithersburg, Maryland
Outline

1. Introduction
2. Method for realization of total spectral radiant flux (TSRF) scale
3. Development of TSRF standards
 - 4π TSRF standard
 - 2π TSRF standard
4. Summary
4π sphere-spectroradiometer system

\[\Phi_v = K_m \int_\lambda \Phi_{e,\lambda}(\lambda)V(\lambda)d\lambda \]

\[K_m = 683 \text{ lm/W} \]

\[V(\lambda): \text{CIE spectral luminous efficiency function} \]
2π sphere-spectroradiometer system

\[\Phi_v = K_m \int \Phi_{e,\lambda}(\lambda)V(\lambda) d\lambda \]

$K_m = 683 \text{ lm/W}$

$V(\lambda)$: CIE spectral luminous efficiency function
Realization of the TSRF scale

Measure spectral radiant intensity or spectral irradiance of a test lamp in many directions \((\theta, \phi)\) using a absolute \textit{gonio-spectroradiometer}.

\[
\Phi_{e,\lambda}(\lambda) = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda}(\lambda, \theta, \phi) \sin \theta d\theta d\phi
\]
or
\[
\Phi_{e,\lambda}(\lambda) = r^2 \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} E_{\lambda}(\lambda, \theta, \phi) \sin \theta d\theta d\phi
\]

\(\Phi_{e,\lambda}(\lambda)\): total spectral radiant flux (W/nm)

However, an absolute \textit{gonio-spectroradiometer} is costly!
Realization of TSRF scale at NIST

Relative gonio-spectroradiometer Absolute 2.5 m integrating sphere

Two-step approach, based on both
- Candela scale
- Spectral irradiance scale

\[
\Phi_{e,\lambda}(\lambda) = k_{\text{scale}} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} S(\lambda, \theta, \phi) \sin \theta \, d\theta \, d\phi
\]

\[
k_{\text{scale}} = \frac{\Phi_v}{K_m \int_{\lambda=0}^{\infty} V(\lambda) \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} S(\lambda, \theta, \phi) \sin \theta \, d\theta \, d\phi \, d\lambda}
\]

The relative gonio-spectroradiometer

Rotation radius: 1.25 m

Angle coverage
$3^\circ \leq \theta \leq 180^\circ$

$0^\circ \leq \phi \leq 360^\circ$

Spectroradiometer:
CCD array system (300 nm - 1100 nm)

Speed:
1 hour per scan with 10° step

Stray light is serious in NIR! Good baffling is critical.
Stray-light correction for the spectroradiometer

Stray-light error vs lamp CCT

Stray-light error in calibration results (for a 3200 K test lamp)
Spectral responsivity vs viewing angle
Signal nonlinearity of the array spectroradiometer

![Graph showing signal nonlinearity over different wavelengths and time periods.](image.png)
Stability of the gonio-spectroradiometer

![Graph showing stability over time](image_url)

- **Day 0**
- **Day 14**
- **Day 23**
- **Day 34**
- **Day 35**
Aging curves of radiant intensity at 3100 K CCT at six wavelengths.

NIST 4π TSRF standard
- 75 W, 28 V, 3100 K QTH lamp
- First developed in 2006
The newly developed 2π TSRF standard

First 2π standard

- 20 W, 12 V, 3000 K reflector halogen lamp
- Modified for a near Lambertian beam pattern
Measured beam profile of the 2π TSRF standard

Angular intensity distribution

Viewing angle, θ (Deg)

Lambertian source

The 2π standard lamp
Measured CCT of the 2π TSRF standard
Aging curves of spectral radiant intensity at 430 nm, 555 nm, 720 nm, and 830 nm over 24 h operation time.

Aging of CCT over 24 h operation time.
Uncertainty of NIST TSRF standard lamps

![Graph showing expanded uncertainty as a function of wavelength for 2π and 4π TSRF standard lamps.]

- Expanded Uncertainty (%, K=2)
- Wavelength, λ (nm)

2π TSRF standard lamp
4π TSRF standard lamp
- Use energy mode (dose) instead of power mode.
- Use charge amplifiers instead of trans-impedance amplifiers.
- 10 ppm repeatability with >20% laser power fluctuations.
Summary

- NIST has developed a new 2π total spectral radiant flux calibration standard from 360 nm to 1100 nm with uncertainty between 2.9% to 1.3% ($k=2$), using a relative gonio-spectroradiometer, based on the NIST total luminous flux scale and the NIST spectral irradiance scale.

- The calibration service is available for either submitted lamps or NIST issued new lamps.

- Research is still going on to
 1) Improve the facility of further reducing uncertainties.
 2) Extend to the spectral range to deep UV.
References

Thank you