Toward AN IMPROVED TERMINOLOGY for FLUORESCENCE SPECTROPHOTOMETRY

Presented by: James E. Leland, Principal

Copia LLC *Consultants in Optical Science*

Overview

Introduction

I. Purpose & Definition of TermsII. Refinements to ILV Terminology by ASTM E12III. Further Refinements: Geometric Generalization

Conclusion

INTRODUCTION

One piece of the puzzle

- Goal: A Unified Terminology, spanning:
 - Colorimetry
 - Analytical Chemistry
 - Materials Science

• The scope of this presentation is limited to considering a few terms defined in the ILV.

Provisional Terms, Unispectral

	EXTERNAL		INTERNAL	
	Quantum	Radiant	Quantum	Radiant
Yield	$\gamma_p(\mu)$ external spectral quantum yield	$\gamma_e(\mu)$ external spectral radiant yield	$\varphi_p(\mu)$ internal spectral quantum yield	$\varphi_e(\mu)$ internal spectral radiant yield
Yield Factor	$G_p(\mu)$ spectral quantum yield factor*	$G_e(\mu)$ spectral radiant yield factor		

Provisional Terms, Unispectral

	EXTERNAL		INTERNAL	
	Quantum	Radiant	Quantum	Radiant
Yield	γ _p (μ) external spectral quantum yield	γ _e (μ) external spectral radiant yield	<i>φ_p(μ)</i> internal spectral quantum yield	<i>φ_e(μ)</i> internal spectral radiant yield
Yield Factor	G(µ) spectral yield factor			

Provisional Terms, Bispectral

	EXTERNAL		INTERNAL	
	Quantum	Radiant	Quantum	Radiant
Yield	$\gamma_{p,\lambda}(\mu,\lambda)$ external bispectral quantum yield	$\gamma_{e,\lambda}(\mu,\lambda)$ external bispectral radiant yield	$\varphi_{p,\lambda}(\mu,\lambda)$ internal bispectral quantum yield	$\varphi_{e,\lambda}(\mu,\lambda)$ internal bispectral radiant yield
Yield Factor	$G_{p,\lambda}(\mu,\lambda)$ bispectral quantum yield factor**	$G_{e,\lambda}(\mu,\lambda)$ bispectral radiant yield factor**		

Provisional Terms, Bispectral

	EXTERNAL		INTERNAL	
	Quantum	Radiant	Quantum	Radiant
Yield	γ _{p,λ} (μ,λ) external bispectral quantum yield	$\gamma_{e,\lambda}(\mu,\lambda)$ external bispectral radiant yield	φ _{p, λ} (μ,λ) internal bispectral quantum yield	$\varphi_{e,\lambda}(\mu,\lambda)$ internal bispectral radiant yield
Yield Factor	$G_{\lambda}(\mu,\lambda)$ bispectral yield factor			

PURPOSE & DEFINITIONS

I.

Purpose

- 1) To present a critique of the following terms as defined in the ILV:
 - $\beta_{L,\lambda}(\mu)$ bispectral luminescent radiance factor $\beta(\lambda)$ - spectral radiance factor
 - $\eta_{\mu}(\mu)$ spectral quantum efficiency of the fluorescent process
- 2) To propose more appropriate alternatives:
 G_λ(μ,λ) bispectral yield factor
 P(λ) spectral power factor
 G(μ) spectral yield factor

Proposed Alternative Terms

ILV Term	Proposed Alternative
$\beta_{L,\lambda}(\mu)$	$G_{\lambda}(\mu, \lambda)$
$\beta(\lambda)$	$P(\lambda)$
$\eta_{\mu}(\mu)$	G(µ)

DEF (ILV): $\beta_{L,\lambda}(\mu)$

bispectral luminescent radiance factor $(\beta_{L,\lambda}(\mu))$ -The ratio of the radiance per unit emission bandpass, at wavelength λ , due to photoluminescence from the specimen when irradiated at wavelength μ , to the radiance of the perfect reflecting diffuser, identically irradiated and viewed. [unit: nm⁻¹]

New DEF: $G_{\lambda}(\mu,\lambda)$

bispectral yield factor $(G_{\lambda}(\mu,\lambda))$ - ratio of the flux per unit emission bandpass, at wavelength λ , from the specimen when irradiated at wavelength μ , to the flux emitted by the perfect reflecting diffuser, identically irradiated and viewed. [unit: nm⁻¹]

NOTE For photoluminescent media, the bispectral yield factor contains 2 components, the bispectral reflectant yield factor, $G_{R\lambda}(\mu,\lambda)$, and the bispectral luminescent yield factor, $G_{L\lambda}(\mu,\lambda)$. The sum of the reflectant and luminescent components is the total bispectral yield factor, $G_{T\lambda}(\mu,\lambda)$: $G_{T\lambda}(\mu,\lambda) = G_{R\lambda}(\mu,\lambda) + G_{L\lambda}(\mu,\lambda)$.

DEF (ILV): β

radiance factor (*at a surface element of a non selfradiating medium, in a given direction, under specified conditions of irradiation*) [β] - ratio of the radiance of the surface element in the given direction to that of the perfect reflecting or transmitting diffuser identically irradiated and viewed. [Unit: 1]

NOTE For photoluminescent media, the radiance factor contains 2 components, the reflected radiance factor, β_R , and the luminescent radiance factor, β_L . The sum of the reflected and luminescent radiance factors is the total radiance factor, β_T : $\beta_T = \beta_R + \beta_L \dots$

Implicit DEF: β(λ)

spectral radiance factor (*at a surface element of a non self-radiating medium, in a given direction, under specified conditions of irradiation*) [$\beta(\lambda)$] - ratio of the spectral radiance of the surface element in the given direction to that of the perfect reflecting or transmitting diffuser identically irradiated and viewed. [Unit: 1]

NOTE For photoluminescent media, the spectral radiance factor contains 2 components, the reflected spectral radiance factor, $\beta_{\rm R}(\lambda)$, and the luminescent spectral radiance factor, $\beta_{\rm L}(\lambda)$. The sum of the reflected and luminescent components is the total spectral radiance factor, $\beta_{\rm T}(\lambda)$: $\beta_{\rm T}(\lambda) = \beta_{\rm R}(\lambda) + \beta_{\rm L}(\lambda)$.

New DEF: $P(\lambda)$

spectral power factor (at a surface element of a non self-radiating medium, under specified conditions of irradiation and view) $[P(\lambda)]$ - ratio of the spectral flux emitted by the sample over the specified viewing aperture to that emitted by the perfect reflecting diffuser, identically irradiated and viewed. [Unit: 1]

NOTE For photoluminescent media, the spectral power factor contains 2 components, the reflected spectral power factor, $P_{\rm R}(\lambda)$, and the luminescent spectral power factor, $P_{\rm L}(\lambda)$. The sum of the reflected and luminescent components is the total spectral power factor, $P_{\rm T}(\lambda)$: $P_{\rm T}(\lambda) = P_{\rm R}(\lambda) + P_{\rm L}(\lambda)$.

DEF (ILV): $\eta_{\mu}(\mu)$

spectral quantum efficiency of the fluorescent process $(\eta_{\mu}(\mu))$ - the ratio of the total number of photons of all wavelengths emitted from the specimen by the fluorescent process for an excitation at wavelength μ to the number of photons of wavelength μ reflected from the perfectly reflecting diffuser identically irradiated and viewed. [unit: 1]

New DEF: *G*(*μ*)

spectral yield factor $[G(\mu)]$ (at a surface element, for given geometric conditions of irradiation and view, and for monochromatic incident radiation of given wavelength (μ) , and polarisation) - ratio of the flux emitted by the sample over the specified viewing aperture to that emitted by the perfect reflecting diffuser, identically irradiated and viewed. [Unit: 1]

NOTE For photoluminescent media, the spectral yield factor contains 2 components, the reflected spectral yield factor, $G_{\rm R}(\lambda)$, and the luminescent spectral yield factor, $G_{\rm L}(\lambda)$. The sum of the reflected and luminescent components is the total spectral yield factor, $G_{\rm T}(\lambda)$: $G_{\rm T}(\lambda) = G_{\rm R}(\lambda) + G_{\rm L}(\lambda)$.

REFINEMENTS TO ILV TERMS ADOPTED BY ASTM E12

II.

Refinements by ASTM E12

1) " $\beta_{L,\lambda}(\mu)$ " is misleading: \therefore " $\beta_{L,\lambda}(\mu)$ " \rightarrow " $b_{F,\lambda}(\mu)$ "

2) $b_{F,\lambda}(\mu)$ is unnecessarily limited: $\therefore LET \quad b_{\lambda}(\mu) \equiv b_{F,\lambda}(\mu) + b_{R,\lambda}(\mu)$

3) " $\eta_{\mu}(\mu)$ " is grossly misleading.... $\therefore \eta_{\mu}(\mu)$ " \rightarrow " $b_F(\mu)$ "

1) " $\beta_{L,\lambda}(\mu)$ " is misleading

• Consider the notation convention described in DEF (ILV): *Spectral*:

DEF (ILV): Spectral

spectral - adjective that, when applied to a quantity *X* pertaining to electromagnetic radiation, indicates: either that *X* is a function of the wavelength λ , symbol: $\frac{X(\lambda)}{X}$ or that the quantity referred to is the spectral concentration of *X*, symbol: $X_{\lambda} = \frac{dX}{d\lambda}$

NOTE 1 In the latter case, in French, "spectrique" is preferred to "spectral". NOTE 2 X_{λ} is also a function of λ and in order to stress this, may be written $X_{\lambda}(\lambda)$ without any change of meaning.

NOTE 3 The quantity X can also be expressed as a function of frequency v, wave number σ , etc.; the corresponding symbols are X(v), $X(\sigma)$, etc. and X_v , X_σ , etc.

" $\beta_{L,\lambda}(\mu)$ " is misleading

$"\beta_{L,\lambda}(\mu)" \to \exists \beta_L(\mu): \beta_{L,\lambda}(\mu) = \frac{d}{d\lambda} \beta_L(\mu)$

" $b_{F,\lambda}(\mu)$ " is enlightening

$"b_{F,\lambda}(\mu)" \to \exists b_F(\mu): b_{F,\lambda}(\mu) = \frac{d}{d\lambda} b_F(\mu)$

 $\exists b_F(\mu)$

 $b_{F,\lambda}(\mu)$ is the spectral concentration, with respect to emission wavelength, of $b_F(\mu)$

DEF: $b_F(\mu)$

spectral fluorescence efficiency factor $[b_F(\mu)]$ (at a surface element, for given geometric conditions of irradiation and view, and for monochromatic incident radiation of given wavelength (μ), and polarisation) - ratio of the flux due to fluorescence emitted by the sample over the specified viewing aperture to that emitted by the perfect reflecting diffuser, identically irradiated and viewed. [Unit: 1]

2) Bispectral description needn't be limited to luminescence: DEF: $b_{\kappa\lambda}(\mu)$

bispectral lumineseent radiance factor $(b_{\kappa,\lambda}(\mu))$ -The ratio of the *radiance* per unit emission bandpass, at wavelength λ , due to photolumineseence from the specimen when irradiated at wavelength μ , to the *radiance* of the perfect reflecting diffuser, identically irradiated and viewed. [unit: nm⁻¹]

NOTE For photoluminescent media, the bispectral radiance factor contains 2 components, the bispectral reflectant radiance factor, $b_{R\lambda}(\lambda)$, and the bispectral fluorescent radiance factor, $b_{F\lambda}(\lambda)$. The sum of the reflectant and luminescent components is the total bispectral radiance factor, $b_{T\lambda}(\lambda)$: $b_{T\lambda}(\lambda) = b_{R\lambda}(\lambda) + b_{L\lambda}(\lambda)$.

2) Bispectral description needn't be limited to luminescence: DEF: $b_{\lambda}(\mu)$

bispectral radiance factor $(b_{\lambda}(\mu))$ - The ratio of the *radiance* per unit emission bandpass at wavelength λ from the specimen when irradiated at wavelength μ , to the *radiance* of the perfect reflecting diffuser, identically irradiated and viewed. [unit: nm⁻¹]

NOTE For photoluminescent media, the bispectral radiance factor contains 2 components, the bispectral reflectant radiance factor, $b_{R\lambda}(\lambda)$, and the bispectral fluorescent radiance factor, $b_{F\lambda}(\lambda)$. The sum of the reflectant and luminescent components is the total bispectral radiance factor, $b_{T\lambda}(\lambda)$: $b_{T\lambda}(\lambda) = b_{R\lambda}(\lambda) + b_{L\lambda}(\lambda)$.

$b_{\lambda}(\mu)$ as a Unified Descriptor

- $b_{\lambda}(\mu)$ provides a unified, bispectral description
 - Including *both*:
 - A luminescent component:

 $b_{F,\lambda}(\mu)$

• A non-luminescent component, e.g.: $b_{R,\lambda}(\mu)$

$$b_{\lambda}(\mu) = b_{R,\lambda}(\mu) + b_{F,\lambda}(\mu)$$

• NOTE: $b_{R\lambda}(\mu)$ is a rather unusual function*

*Bispectral Representation of Reflection

- $b_{R\lambda}(\mu)$ is a rather unusual function:
 - discontinuous
 - zero everywhere except at $(\lambda = \mu)$, where it's very large;
 - integrates to the value of $R(\lambda)$.
- Nevertheless, $b_{R\lambda}(\mu)$ is a perfectly valid concept:
- $b_{R\lambda}(\mu)$ is closely related to the more familiar $R(\lambda)$. - in terms of the Dirac delta-function, $\delta(\lambda - \mu)$:

$$b_{R,\lambda}(\mu) = R(\lambda)\delta(\lambda - \mu)$$

Bispectral Measurement: Theory vs. Practice

- While the concept of $b_{R\lambda}(\mu)$, and therefore $b_{\lambda}(\mu)$, seems complicated in theory,...
- The measurement of $b_{\lambda}(\mu)$ is relatively straightforward in practice:
 - Bispectral data is naturally presented as a twodimensional array of values - a *matrix*, with dimensions corresponding to μ and λ .
 - Though $b_{\lambda}(\mu)$ is a function of continuous spectral variables, matrix values are a function of *discrete spectral variables* (μ_{i} , λ_{i}).

3) " $\eta_{\mu}(\mu)$ " is grossly misleading

 $''\eta_{\mu}(\mu)'' \to \exists \eta(\mu): \eta_{\mu}(\mu) = \frac{d}{d\mu}\eta_{\mu}(\mu)$

i.e., it implies that $\eta_{\mu}(\mu)$ [unit:1] is some sort of spectral concentration [unit: nm⁻¹]; It is not.

 $\therefore ~~ \eta_{\mu}(\mu) ~~ \rightarrow ~~ b_F(\mu) ~~$

Proposed Refinement (ASTM E12)

4) " $b_{\lambda}(\mu)$ " is unclear re: dimensions.

- Though the ILV indicates that e.g. " $b_{\lambda}(\mu)$ " indicates a function of <u>both</u> μ and λ , many correspondents have found this to be unclear.
- The consensus seems to be that " $b_{\lambda}(\mu,\lambda)$ " would be a preferable notation.
- Such notation is already allowed by the ILV.

 $\therefore ``b_{\lambda}(\mu)'' \rightarrow ``b_{\lambda}(\mu,\lambda)''$

DEF (ILV): Spectral

spectral - adjective that, when applied to a quantity *X* pertaining to electromagnetic radiation, indicates: either that *X* is a function of the wavelength λ , symbol: $X(\lambda)$

or that the quantity referred to is the spectral concentration of X, symbol: $V = \frac{dX}{dX}$

$$X_{\lambda} = \frac{dA}{d\lambda}$$

NOTE 1 In the latter case, in French, "spectrique" is preferred to "spectral".

NOTE 2 X_{λ} is also a function of λ and in order to stress this, may be written $X_{\lambda}(\lambda)$ without any change of meaning.

NOTE 3 The quantity X can also be expressed as a function of frequency v, wave number σ , etc.; the corresponding symbols are X(v), $X(\sigma)$, etc. and X_v , X_σ , etc.

III. FURTHER REFINEMENTS: GEOMETRIC GENERALIZATION

Further Refinements for Geometric Generalization 1) DEF: $\beta(\lambda)$ is geometrically limited. $\therefore \beta(\lambda) \rightarrow P(\lambda)$ Likewise, DEFs: $b(\mu)$, $b_{\lambda}(\mu,\lambda)$ are limited; 2) $\therefore b(\mu) \rightarrow G(\mu)$ 3) $\therefore b_{\lambda}(\mu,\lambda) \rightarrow G_{\lambda}(\mu,\lambda)$

1) DEF: $\beta(\lambda)$ is limited

• Like radiance, β is defined in the ILV only "in a given direction"

- i.e., in the limit, as the solid angle of collection $(\Omega) \rightarrow 0$.

- Nevertheless, for small Ω□ it's reasonable to speak of measuring the average β about a given direction.
 But β is not defined when Ω is finite, and significant,
 - Dut p is not defined when 32 is finite, and significant,
- For large Ω , \Box e.g. for d/h geometries ($\Omega = 2\pi$), it's <u>not</u> reasonable to speak of measuring an average β .

- The definition of such an average would be problematic.

DEF: $P(\lambda)$ is <u>not</u> so limited

P(λ) is a ratio of spectral <u>flux</u> emitted by the sample to spectral <u>flux</u> emitted by the perfect reflecting diffuser (PRD).

• $P(\lambda)$ is defined for any given collection solid angle (Ω) .

We don't measure $\beta(\lambda)$; rather $P(\lambda)$

• When we consider spectrophotometric practice, we recognize that we are actually measuring $P(\lambda)$.

- For directional collection geometries, this difference is not of practical importance, since: $P(\lambda) \rightarrow \beta(\lambda)$ as $\Omega \rightarrow 0$

- For hemispherical collection geometries, however, this difference is important, since $\beta(\lambda)$ is not defined.

Acknowledging Historical Usage

- Spectral radiance factor (β(λ)) is equivalent to P(λ) for directional geometries,
 but undefined for hemispherical geometries.
- Nevertheless, $\beta(\lambda)$ has been widely used in the literature without regard to this distinction
- In such cases, $\beta(\lambda)$ may be understood loosely as a synonym for $P(\lambda)$.

DEF: *b(μ)* is limited, as DEF: *G(μ)* is not.

- $G(\mu)$ is a ratio of flux emitted by the sample to flux emitted by the PRD.
- G(μ) is defined for any given collection solid angle (Ω).
- $b(\mu)$ is a radiance ration of radiance;
- Radiance is properly defined <u>only</u> in a given direction $(\Omega \rightarrow 0)$.
 - For small Ω , it's reasonable to speak of measuring an average about a given direction, but for large solid angle of collection, e.g. $\Omega = 2\pi$, it is not.

We measure $G(\mu)$, not $b(\mu)$

- $G(\mu)$ is essentially ratio of the flux emitted by the sample to flux emitted by the PRD.
- $b(\mu)$ is a ratio of the sample's radiance to the radiance of the PRD.

• What we actually measure with a spectrophotometer (using monochromatic illumination) is $G(\mu)$.

3) DEF: $b_{\lambda}(\mu,\lambda)$ is limited, as DEF: $G_{\lambda}(\mu,\lambda)$ is not.

- $G_{\lambda}(\mu,\lambda)$ is essentially a ratio of the spectral flux emitted by the sample to flux emitted by the PRD.
- $G_{\lambda}(\mu,\lambda)$ is defined \forall collection solid angles (Ω).
- $b_{\lambda}(\mu,\lambda)$ is essentially a ratio of the sample radiance to the radiance of the PRD.
- $b_{\lambda}(\mu,\lambda)$ is properly defined <u>only</u> in a given direction $(\Omega \rightarrow 0)$.

We measure $G_{\lambda}(\mu, \lambda)$, not $b_{\lambda}(\mu, \lambda)$

- $G_{\lambda}(\mu,\lambda)$ is essentially ratio of the spectral flux emitted by the sample to flux emitted by the PRD.
- $b_{\lambda}(\mu,\lambda)$ is a ratio of the sample's spectral radiance to the radiance of the PRD.

• What we actually measure with a bispectrometer is $G_{\lambda}(\mu,\lambda)$.

CONCLUSION

Provisional Recommendations

ILV Term	Preferred Term
$\beta_{L,\lambda}(\mu)$	$G_{L,\lambda}(\mu,\lambda)$
β(λ)	$P(\lambda)$
$\eta_{\mu}(\mu)$	$G_L(\mu)$
ILV Term	Generalization
$\beta_{L,\lambda}(\mu)$	$G_{\lambda}(\mu,\lambda)$
$\beta(\lambda)$	$P(\lambda)$
$\eta_{\mu}(\mu)$	G(µ)

QUESTIONS?

Copia LLC Consultants in Optical Science